MATH2050C Selected Solution to Assignment 9

Section 5.1 no. 3, 4ac, 5, 8, 10, 13.

- (4a) The function f(x) = [x] is continuous except at all integers.
- (4c) The function $h(x) = [\sin x]$ is continuous whenever $\sin x$ is not equal to -1,0,1. At x=0, $[\sin x] = 0$ for small x > 0 but $[\sin x] = -1$ for small x < 0, so it is not continuous at 0. Similarly, it is not continuous at all $n\pi$. On the other hand, $\sin x = 1$ if and only if $x = (2n+1/2)\pi$, $n \in \mathbb{Z}$. For x comes close to $(2n+1/2)\pi$ from its right or left, $\sin x$ is very close to 1 but less than 1, so $[\sin x] = 0$. As $[\sin \pi/2] = 1$, h is discontinuous at $(2n+1/2)\pi$. On the other hand, when x comes close to $3\pi/2$, $\sin x$ is greater and close to -1, hence $[\sin x] = -1 = [\sin 3\pi/2]$. Hence $[\sin x]$ is continuous at $(2n+3/2)\pi$. Conclusion: The discontinuity points of h are $n\pi$ and $(2n+1/2)\pi$, $n \in \mathbb{Z}$.
- (5) We have

$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2} = \lim_{x \to 2} (x + 3) = 5.$$

Therefore, the function F(x) = f(x) when $x \neq 2$ and F(2) = 5 is a continuous function which extends f.

- (8) Yes. Pick a sequence of rational numbers $\{r_n\}$ to tend to a given irrational number x. By continuity, $f(x) = \lim_{n \to \infty} f(r_n) = \lim_{n \to \infty} g(r_n) = g(x)$.
- (13) Let x_0 be a continuity point of g. Let $\{x_n\}$ be a sequence of rational numbers tending to x_0 . By continuity at x_0 , $g(x_0) = \lim_{n \to \infty} g(x_n) = \lim_{n \to \infty} 2x_n = 2x_0$. On the other hand, let $\{y_n\}$ be an irrational sequence tending to x_0 . We have $g(x_0) = \lim_{n \to \infty} g(y_n) = \lim_{n \to \infty} (y_n + 3) = x_0 + 3$. We get $2x_0 = x_0 + 3$ which implies $x_0 = 3$. Conclusion: 3 is the unique continuity point for g.

Section 5.2 no. 1bc, 3, 7, 10, 11, 15.

- (1b) g is continuous on $[0, \infty)$. For, both x and \sqrt{x} are continuous functions on $[0, \infty)$, so is their sum $x + \sqrt{x} \in [0, \infty)$. As the function $y \mapsto \sqrt{y}$ is continuous on $[0, \infty)$, the composite function $g(x) = \sqrt{x + \sqrt{x}}$ is continuous on $[0, \infty)$.
- (1c) $\sin x$ and the absolute value (function) are continuous on $(-\infty, \infty)$, so is their composite $|\sin x|$. It follows that $\sqrt{1+|\sin x|}$ (the composite of $1+|\sin x|$ and the square root function) is continuous on $(-\infty, \infty)$. As the quotient of two continuous functions is continuous away from where the denominator vanishes, we conclude that h is continuous on $(-\infty, 0) \cup (0, \infty)$.
- (7) Just let f(x) = 1 at rational x and f(x) = -1 at irrational x.
- (12) Let $x_1 \in \mathbb{R}$. We would like to show f is continuous at x_1 . Let $\{y_n\}$ be $y_n \to x_1$. Then $y_n (x_1 x_0) \to x_0$, so by additivity of f and continuity at x_0 we have $f(y_n) = f(y_n (x_1 x_0)) + f(x_1 x_0) \to f(x_0) + f(x_1 x_0) = f(x_1)$, done.
- (13) f being additive means f(x+y) = f(x) + f(y). By induction, $f(x_1 + \cdots + x_n) = f(x_1) + \cdots + f(x_n) + f($

 $f(x_n)$. Taking $x_1 = \cdots = x_n = x$, f(nx) = nf(x). It follows that f(1) = f(m1/m) = mf(1/m) which implies f(1/m) = f(1)/m = c/m. Then f(n/m) = nf(1/m) = cn/m, that is, f(r) = cr for all rational numbers r. By continuity, f(x) = cx for all x.

(15) The formula

$$\sup\{a,b\} = \frac{1}{2}(a+b) + \frac{1}{2}|a-b| ,$$

can be verified by considering the cases a < b and a > b separately. Hence

$$h(x) = \sup\{f(x), g(x)\} = \frac{1}{2}(f(x) + g(x)) + \frac{1}{2}|f(x) - g(x)|$$

shows that h is continuous whenever f and g are continuous.

Note. Can you find a corresponding formula for $\inf\{f,g\}$?

Supplementary Problems

- 1. Determine the largest domain on which the function is defined and study its continuity.
 - (a) $\sin x/x$.

Solution This function is well-defined whenever $x \neq 0$. Hence its largest domain of definition is $(-\infty,0) \cup (0,\infty)$. Since both x and $\sin x$ are continuous everywhere, by the quotient rule $\sin x/x$ is continuous on $(-\infty,0) \cup (0,\infty)$. By the way, as we know $\sin x/x \to 1$ as $x \to 0$. One may extend this function to a new function $f(x) = \sin x/x, x \neq 0$ and f(0) = 1 which is continuous on the entire \mathbb{R} .

(b)
$$\sqrt{\frac{x+6}{x+1}}$$
.

Solution $\frac{x+6}{x+1} \in [0,\infty)$ if and only if x > -1 or $x \le -6$. Hence it is well-defined on $(-\infty, -6] \cup (-1, \infty)$. As the square root function is continuous on $[0, \infty)$, by the composition rule $\sqrt{\frac{x+6}{x+1}}$ is continuous on $(-\infty, -6] \cup (-1, \infty)$.

(c) $sgn(x^2 - x - 2)$

Solution Let $f(x) = \operatorname{sgn}(x^2 - x - 2)$. $x^2 - x - 2 = (x - 2)(x + 1) = 0$ if and only if x = 2, -1. By the composition rule, this function is continuous at all x not equal to 2 or -1. On the other hand, we have $\lim_{x\to 2^+} f(x) = 1$ and $\lim_{x\to 2^-} f(x) = -1$. Therefore, f is not continuous at 2. Similarly, it is not continuous at -1.

(d) $e^{1/\sin x}$.

Solution The function is well-defined whenever $\sin x \neq 0$, hence its largest domain of definition is $\{x : x \neq n\pi, n \in \mathbb{Z}\}$. By the composition rule, it is continuous on this domain.

2. Show that the function

$$f(x) = \frac{(1+x)^{1/2} - 1}{(1+x)^{1/3} - 1}$$

can be extended to be continuous at x = 0.

Solution Using

$$(1+x)^{1/2} - 1 = \frac{x}{\sqrt{1+x}+1}$$
, $(1+x)^{1/3} - 1 = \frac{x}{(1+x)^{2/3} + (1+x)^{1/3} + 1}$,

we have, for $x \neq 0$,

$$f(x) = \frac{(1+x)^{1/2} - 1}{(1+x)^{1/3} - 1} = \frac{(1+x)^{2/3} + (1+x)^{1/3} + 1}{\sqrt{1+x} + 1} \to \frac{3}{2} , \text{ as } x \to 0 .$$

Hence by defining f(0) = 3/2, f becomes continuous at 0.

3. Let f be defined in A. Suppose f is continuous at $c \in A$ and f(c) > 0. Show that there is some $\delta > 0$ such that f(x) > 0 for $x \in A, |x - c| < \delta$.

Solution Taking $\varepsilon = f(c)/2$, there is $\delta > 0$ such that |f(x) - f(c)| < f(c)/2 for $x \in A$, $|x - c| < \delta$. From -f(c)/2 < f(x) - f(c) < f(c)/2 we deduce f(x) > f(c) - f(c)/2 = f(c)/2 > 0, done.